CHAPTER 7 : POST-**TRANSCRIPTIONAL** REGULATION

INTRODUCTION: REGULATION OF ALTERNATIVE SPLICING

- Splicing is tissue specific
- ➤ Different mRNAs will therefore encode for unique proteins
- The absence of RNA splicing of a transcript in a particular tissue results in a lack of production of the corresponding protein.
- Mediated by tissue specific splice factors (ISS, ISE, ESS and ESE)

- > Unspliced RNA would be degraded within the nucleus OR
- > Transpoted to cytoplasm where it is unable to make a functional protein due to the interruption of the protein-coding regions = degraded via nonsense mediated degadation pathway

- Single gene is transcribed in different tissues, each processed differently to yield different functional mRNAs
- In most cases, these RNAs are processed alternatively to yield different products
- Frequent process in embryonic development, sex determination, muscular contractions, neuronal functioning. In Humans, 90% of genes undergo alternative splicing
- The regulation of splicing is linked to regulation of transcription
- Alternatively spliced gene is only transcribed in certain cell types
- Alternative splicing of the same primary transcript in two different ways results in two different mRNA molecules.

INTRODUCTION: REGULATION OF RNA SPLICING

HOW CAN ALTERNATIVE SPLICING BE MEDIATED

 Numerous models are known for how alternative splicing is regulated in a cell

5 MODELS:

- **1.** Differential use of promoters
- **2.** Folding of the transcript
- **3.** Trans-acting proteins that bind to cis-acting sites
- 4. Rate of transcription elongation