CHAPTER 11: CONTROLLING THE MICROBIOLOGICAL QUALITY OF FOODS

11.1 QUALITY AND CRITERIA

- Quality = degree of excellence → how good it is at serving its purpose
- Quality comprises of three aspects
 - Safety
 - o Acceptability/ shelf-life
 - Consistency (w.r.t safety and shelf-life)
- Regulatory bodies and the food industry most actively interested in determining and controlling the microbiological quality of foods
 - Regulatory bodies = protect public
 - o Commercial companies = to protect and enhance their good name and their market
- To distinguish between acceptable and unacceptable quality, need a microbiological criterion
- Three different types of criteria as defined by ICMSF (International Commission on Microbiological Specifications for Foods)
 - Microbiological STANDARD
 - Criterion specified in law/regulation
 - Legal requirement the foods must meet
 - Enforceable by regulatory agency
 - Microbiological SPECIFICATION
 - Criterion applied in commerce
 - Contractual condition of acceptance
 - Applied by purchaser
 - Failure of compliance from supplier will lead to rejection/lower price
 - Microbiological GUIDELINE
 - Used to monitor the microbiological acceptability
 - Advisory and not mandatory
- What should be included in a microbiological criterion
 - Statement of the food to which the criterion applies
 - Statement of the microorganisms/toxins of concern
 - o Details of analytical methods to be used to detect and quantify
 - Number and size of samples to be taken
 - o Microbiological limits and the number of sample results which must conform to these limits
 - n = n number of samples to be tested
 - c = maximum allowable number of samples which can > m before the lot is rejected (two-class attributes plan) **OR** the maximum allowable number of samples which may fall into the marginally acceptable category before the lot is rejected (three-class attributes plan)
 - 11.2 m = count above which the sample is regarded as defective (two-class attributes plan) **OR** count which separates good quality from marginal quality and which most test samples should not exceed (three-class attributes plan)
 - M = count if exceeded by any of the samples will lead to rejection of whole lot (three-class attributes plan)
- However, microorganisms are rarely distributed uniformly or randomly in food → resulting distribution = contagious distribution, which contains aggregates of cells
- As the number of samples tested \uparrow , the confidence in the result \uparrow , but the cost of testing also \uparrow = thus a compromise must be struck between what is practical and what gives the best estimate of lot quality